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Abstract-Filler pull-out is one of the fracture features of fiber-reinforced ceramic matrix
composites. The onset of this mechanism is predicted by using Continuum Damage Mechanics. and
corresp\)nds 10" \\'C"liz"ti\'n \'flhe dcform"li\)ns. Afler deriving Iwo dam"ge models from a uni"xial
bundle appro"ch. ditTerent conligurations an: a""lysed through analytical and numerical (F.E.
calculations) mcthods. For \lI1C modd some vcry simple critcria can be dcrived. where"s for the
second one none \,1' these criteria can be derived "nd thc I!cncr,,1 criterion of localization has to be
u~d. •

I. INTRODUCTION

The aim of this paper is to study the I~tilure of Iiber-n:i nforced ceramic-matrix composites.
One of the features of their behavior is liber pull-out due to fiber brc'lking. The occurrence
of this l11edtanism is assumed to be described by the appearance of a macro-crack and will
be described by a Im:.t1ization of the deformations. The initiation of macro-cracks in a
structure during sef\'il:e often constitutes the early stage of the Iinal failure of the structure.
Starting from a material that is assumed to be free from any initial defect. the initiation of
mal:ro-I:ral:ks I:an be predidcd using Continuum Damage Mechanil:s. This approach has
successfully becn uscd for ductile materials (Billardon and Doghri. 1989a.b; Doghri. 1989).
The initiation stage is considered as the onset of a surfal:c across which thc velocity gradient
is disl:ontinuous. Under small deformations assumption. this phenomenon is m'linly driven
by the damage mechanism that causes strain-softening. For ceramic-matrix composites. the
damage mcdtanisll1 is related to Iiber breaking.

Stationary wa\'es were studied by Hadamard (1903) in elasticity, by Hill (1962) and
Mandel ( 19(2) in e1asto-plasticity. Rice ( 1(76) related the localization of plastic shear bands
to jumps of the velocity gradient. Recently. Borri: und Maier (1989) have given necessary
and sutlkientl:onditions for the onset of modes inside the body. whieh extended the results
given by Rice (1976). Rice and Rudnicki (19S0) and Rudnicki and Rice (1975).

This type of approach will also be used in the study of liber-reinforced composites.
Although localization can be studied at the seale of libers bonded to a matrix through an
interface (Benallal ('( al.. 19(1). i.e. at a micro-level. localization can also be analysed at a
meso-level. where the material is assumed to be homogeneous. Continuum Damage Mech
anics. which represents a local approach to fracture. constitutes an eflicient tool for this
purpose. The progressive deterioration of the material is modeled by an internal variable
deli ned at the meso-Ie\'el. This variable is called "/1/1/(1.//<'. The damage state and the evolution
of this variable is obtained through a uniaxial study based on fiber breaking (Coleman.
(95S). A 2-D plane stress analysis is performed based on an extended model. The loss of
uniqueness and the localization arc studied for sheur free states. A criterion referring to a
critical value of the damage can describe the localization. which constitutes an objective
criterion. from a dcsign point of view.

This approach is also used to study a spinning disc made of a liber-reinforced ceramic
matrix composite. The same criteria arc implemented and studied through Finite Element

t Also at Lahorahlire de Mecanique el Technologic. E.N.S. de Cachan. 61 avenue du Presidcnt Wilson.
F·94~35 Cachan Ccde,. France.

t Now ill Department or Solid Mechill1ics. Royal Instilute of Technology. S-IOO 44 Stockholm. Swedcn.
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computations. A mesh dependence study is performed and a comparison is made with
realistic situations.

2. LOCALIZATION AND LOSS OF UNIQUENESS

The failure at a meso-level. i.e. initiation of a macro-crack. is defined as the bifurcation
of the rate problem in certain modes. ri=. the appearance of a surface across which the
velocity gradient is discontinuous (Billardon and Doghri. 1989a). This phenomenon is
referred to as /oca/buion. and corresponds to the failure of the ellipticity condition (Benallal
et al.. 1991). The condition of localization can also be compared to the loss of uniqueness
of the rate problem.

Under small strain assumption and in elasticity coupled with damage. the behavior of
a material is assumed to be described by the following piece-wise linear rate constitutive
law:

. _ {[: t
G- lH!:t

if D= O•

if [) =f. O.
( I )

where 0 and t respectively denote the stress and strain r<ltes. [ and IHJ arc fourth rank
tensors, [ is assumed to be positive definite, and [) is either a single damage variaolc or a
set of damage variahies.

Localization occurs inside the oody. i(w/(/ ollly i(Borr~ and Maier. IlJRlJ; Benallal ('{
al., 19lJ I)

Det (n 'IH!' n) = O. for any vector n 1= () and at any point inside a structure n. (2)

This criterion corresponds to the failure of the ellipicity condition of the rate equilihriulll
equation (sec Appendix A); it can also he used as an indicator of the local failure of the
material. i.e. at a meso-scale (Billardon and Doghri. 19R9a).

Also, any loss of uniqueness. considered as hifurcation of the rate houndary value
problem. is excluded as long as the operator

(3)

is strictly positive delinite everywhae within the structure. This condition is equivalent to
the condition of hardening

0: t > O. (4)

In this study. the quantity that defines loss of uniqueness and loc.dization is the linear
tangent modulus 1Hl. In the following, we analyse loss of uniqueness .tnl! loss of ellipticity
(i.e. localization) for st'ltes when

(5)

These particular states only arc considered. since we will deal with axisymmetric calcu
l<ltions. which are shear free. These states lead to a tangent modulus that takes the form
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(6)

For problems under hypothesis (5). the non-vanishing components of vector n are nl and
n~. and the matrix ~ = n 'IH!' n reduces to (Ortiz et al.. 1987)

nl~~(HI ~ I~ ~ H II ~~)J.

niHI~I~+n~H~~~~
(7)

{fwe rewrite (nl.n2) = (cos O.sin 0). X = tan~ O. then the localization condition is to find
real positive roots of the following equation:

with

aX~+hX+c=O

h = 111111112222 -11 1122 11~211 - /1 1122 /1 1212 - /l2~ I I /II ~ I~.

c= H1212111111'

(8)

(941)

(9b)

(9c)

If real positive roots arc found. thcn thc localization direction is perpendicular to the vector
(n I. n2. 0) = (cos O. sin 0.0). characterized by the angle 0 (Fig. I).

The values of Hili" H 2222 • 11 1122 • H ~211 and H I212 arc model-dependent and spcl:ilic
models are now developed.

3. UNIAXIAL STUDY

This section is concerned with thc dcvelopment of a single damagc variable modd for
tensile behavior of unidircctional fiber-reinforced ceramic-matrix compositcs. A schematic

!!.
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Fig. 1. Localization mode.
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Fig. 2. Schem;llic uniaxial stress strain curve [after Hayhurst clal. (191'1HI.

stress-strain diagram is shown in Fig. 2 for such a specimen. The micro-structural phenom
cna responsible for the features of curve ABCDF arc now discussed. On initial loading
from point A to R of Fig. 2 the composite bdmvcs as a virgin. i.e. undamaged. elastic
material with modulus E. Further loading from point B to C causes cracking of the matrix.
The cracks traverse the entire load-bearing section within the homogeneously stressed
region (Hayhurst ('I al.• 1988). Further loading along CDF (Fig. 2) involves further
development of matrix cracks. which involves two processes. First the process of libel'
debond. both ,It the front of the crack and in its wake. which is necessary to cause the
stresses to redistribute. The second process is tihcr failure. which precedes the prOl.;ess of
fiber pull-out. It is the latter. predominantly irreversible process. which absorbs considerable
energy and is responsible for giving such materials their toughness and ductility (Hayhurst
('I al.. 1988).

The characteristics of tiber lllilure arc determined by a statistical distribution of libel'
strength (Coleman. 1958). This single meeh,lllism is the ollly one considered in this study.
Future development can be carried out by modeling the libel' pull-out mechanism.

The model is based upon the assumption that the nominal stn:ss applictl to a bundle
of libel'S in parallel can be expressed in terms of a damage varia hie. denoted hy [) = r/Il.
where r is the number of llliled fibers and II is the total numba contained within the load
bearing cross-section. This type of upproach has hcen upplied to perfectly brittle tiber
systems (Krajcinovic und Silva. 1982; Huh und Travnieek. 1(83). It is shown that the
nominal applied stress rr is reluted to the uniaxial strain i: hy

( 10)

where E is the Young's modulus of each non-broken libel' and /? the Young's modulus of
the dam,lged bundle. If the nominal stress is the total current load divided by the total
initial libel' urea. then the avenlge stress in the unillilcd libel'S is

rr
if=

1- f)'
(1\ )

This later expression refers to the concept of effective stress (Rabotnov. 1963: Lernaitrc
and Chuboche. 1990). Although the nominal stress does not always increase with the applied
strain F.. the stress iT in thc unfailcd fibers does increase whatever the applied strain F.. We
assume that the probability of libel' survival at a stress if is given hy a Wei bull distribution:
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[ V (a )"'JG(a) = I-F(a) == I-exp - V'" a", . ( 12)

where m is the so-called Weibull modulus. a", is a scale parameter and V", is a reference
volume (for instance a specimen volume for which m and a", were identified). Therefore the
ratio r/n characterized by damage variable D is

r/n == D = G(a). ( 13)

This definition is consistent with the bounded values of D for which D = 0 for no failed
fiber and D = I for complete failure of all fibers.

The damage is therefore related to the nominal stress through relation (II) :

D= I-exp[-~{ (J }"']. if &>0 and 1l>0. (14)
V", (I-D)a",

or to the uniaxial corresponding strain by

D= I-CXP[-~(~-)"']' if 6>0 and r.>0.
V", f.",

( 15a)

with

( ISh)

The relationship hetween the nominal stress (1 and I: can he either implicit

[ V { (1 }"J(1 = [0;,: exp ---.-- . if I: > 0 and I: > n.
V", (I-D)(1..,

( 15c)

or explicit

[ V {L }"](1 == £,: exp - - -:- • if I: > 0 and
V,. I.",

I: > O. (15d)

The peak in the stress-strain plane «(1.&) is given by (Fig. 3)
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D = Dc = I-e:<p(-Im). ( 16)

It can be noticed that the critical value of the damage is independent (~I" volume V of a
considered structure n. Conversely. the ma:<imal nominal stress O"OM depends upon volume
V:

(
V)lm

O"OM = O"m ~ exp (- 1m).
mV

( 17)

The higher the volume. the lower the maximal nominal stress (that is. the strength of the
structure). This result agrees with experiments and is known as a rolllme e.fleet (Weibull.
1939a.b; Coleman. 1958; Kadlecek and Spella. 1967; Davies. 1973; Katamaya and Hattori.
1982). The critical value of damage. Dc. is only related to the Weibull parameter m by (16)
and is therefore a material dependent parameter. Conversely. O"UM depends upon the volume
of the considered structure. so that it is not a material parameter.

Finally. as it has been mentioned above. this model does not consider fiber pull-out.
Thus this model constitutes a IOll'er bound estimate after the maximal nominal stress is
reached. for a strain-controlled test. Indeed. the pull-out mechanism often delays the
decrease of the curve «1. r.) (Hayhurst et 01.• 1988). If the test is stn:ss-controlled. then the
point for which (1 = O'OM constitutes the ultimate stable point.

4. ~·D STUDY

This section deals with the study of a 2-D model e:<tending the ideas of the previ(lus
section. The libers are assumed to be parallel to the 2-direction. In elasticity. under the
plane stress hypothesis. with the small strain assumption. the relationship between stresses
and strains is given by

-II~I/E~

I/E~

o
(I X)

When fiber breaking in the 2-direction is considered. the damage state is described by
damaged clastic constants £,. £2. V12. V21. GI2 instead of E 1• E~. 1'12. I'~I' G,~. respectively.
The Young's modulus E~ is no longer constant but depends upon the degradation of the
fIbers characterized by D 2 to become £2 = E 2( 1- D 2 ) : it is a straightforward extension of
rehltion (10). Since pulling in the I-direction has no effect on the strains in the 2-direction.
Vl 2 is constant and equals V12' Finally we assume that EI = E, (no effect of the damage D
in the I-direction) and that G12 = G 12 (the shear properties are slightly altered by fiber
failure). We also suppose that the material is hyperelastic so that

( 19)

It can therefore be noticed that I;~I = 1'2I(I-D2) and if D~ = 0 then the behavior is purely
clastic and is described by rel<ttion (18). This model has a general form very close to the
model proposed by Allix et 01. (1985). However. the damage evolution is generally different.
The relationships between strains and stresses arc given by (k = E~/£1)

E,
(111 = k[I-"i:(i -D:)kl[r. 1I +I',:(I-D:)kr.::l.

E~(I-D:)

(1:~ = ~~;2(1=D~)k(I:~~+I'I~l;II)'

(20a)

(20b)
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As mentioned in Section ::!. the damage state of fibers in the 2-direction. D~. can be
related to the stress or strain state either through an implicit relationship for model No. I
(D: 1) :

or through an explicit relationship for model No.2 (Dd :

D:: = I-~xp [- ~ {&::}mJ. if &:: > 0 and &u > O. (20d)
~ m &m

Both models describe the material behavior when subjected to uniaxial tension. However
the models give different predictions for multiaxialloading states. It is worth noting that
the stress am depends upon the fiber volume fraction. whereas the strain f:m is still independent
of the fiber volume fraction.

4.1. Model No. /
For model No.1 the tangent operator takes the form:

(2Ia)

(21 b)

(2 Ie)

(2Id)

where the explicit expressions for /.; arc given in Appendix B.
Also. it C.ln be noticed that if [)~I = D< then F7 tends to infinity. Therefore IIII~~'

II~~II and II::~: vanish simultaneously and " 1111 • 1I1~1: arc strictly positive. This point
corresponds to the loss of uni4uem:ss and to a localization with 0 = rt/2 (i.e. perpendicular
to the fiber direction). It C.IO be proven that D~ I = D< (I'i:. II ~u: = 0 and therefore
11 11 ~~ = II:~ II = 0) constitutes a f/('("('.uary and .wJJicient condition for loss of uniqueness
wit/localization. An initiation criterion can therefore be (Fig. 4)

o

/ Localization

a

Fig. 4. Normalilcd d'lmagc at loss of uniqucncss (DLU!DJ and localization (DL!D.) vs strain ratio
% for model No. I.



F. HILlJ <:1 I.ll.

Localization

Matrix Rupture

o
'r' :~~ :~.,,1". ~ r _~"...__ 4 ~

~ .

~,,,,,,..;...
"~~~"' .. ' '. ..:~ .

Fig. 5. Normalized stress level at loss or uniqueness and Im:alization in the fiber direction (a "/a,,,,)
against the l'llrreSlltlnding stress perpendicular to the fiber direction (IT. I /IT",,).

(2241)

Since the condition (22a) implies that rTn [sec relation (20e)] is constant and e4uals rTOM •

anotl1l.:r critt:rion may oe (Fig. 5)

(220)

[t can also oe shown that the critt:rion (22b) can be expressed in terms of the strain energy
releast: rate density Y (Lemaitn: and Ch'lboche. (990). reaching a critical value Y,,:

where r = p«(ll/J IIIID 2 d. pIp I (0. [) 2 d is the strain energy density. which is a function of the
Cauchy's stress tensor o. and the damage variable [)21. p denotes the material density. here
assumed to be constant. The strain energy density pl/J I takes the form

(22d)

where <. ) denotes McCauley's brackets: <-) = He') + '-I].
Moreover. criterion (22b) can be rewritten in terms of 1:22 (Fig. 6) by using relation

(20b) and yields

(22e)

where 1: 0 corresponds to the localization strain when (X = O.
Tht: localization angle. as expected. is e4ua[ to Tt/2 (I'i=. a localization mode per

pendicular to tht: fiber dirt:ction) whatever the strain ratio a (Fig. 7).
It is worth noting that if the failure of the matrix is considered. then localiz'ltion c.tnnot

always occur: there exists another limit given by. for instance. the criterion a II = aM. where
rT M is the strength or the matrix (sec Fig. 5) in the transverse direction.

Knowing the analytical results. it is interesting to study the numeric'll sensitivity of the
detection of the localization point (and therefore the loss of uni4uent:ss as well). The
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Fig. fl. LllSS of uniqueness and k>calilation in (f.,-f.:) plane.

convergence in terms of the damage is rapid compared to the convergence in terms of the
direction of I~ll'ali/ation (Fig. X(a)). This phenomenon can also be observed in Fig. 8(b).
To get accurate information in terms of the damage at localization. direction of localization
ami stress at locali/ation. it is necessary to be as close as possible to the actual localization
statc. This tn:nd has also been ooserved when using a F.E.M. code to compute some more
complicated situations. These trends arc very close to observations drawn from the study
of om:kling where the detection also has to be as accurate as possible.

In Stllllmary. model No. I leads to some very simple results. First. loss of uni4ueness
and locali/ation Ol:cur simultaneously. Second. some very simple aiteria (22) can be derived
from criteria (2) and (.1). and show that the relevant parameters ,tre Weibull's parameter
11/ and Poisson's ratio \'1 ~. Third. the results are indepentknt of the Young's modulus ratio
k = E~/ 1:'\. Fourth. whatever the strain ratio x. the direction of localization is constant and
perpendicular to the fioer direction. This model gives the same results as those found in a
uniaxial approach and constitutes a straightforward generalization to 2-D cases. From a

e

rrJ2

o

/ Localization

a

Fig. 7. L"calizalion dirccli"n (1/) vs strain ratio (%).
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numeril:al standpoint. it is important to be as dose as possible to the localization point to
get al:l:urale information.

4.2. Model No. :1
The tangent operator for model No.2 takes the form

/I ~~~~ = Ft> - FsF).

/lll~~ = F~-F1FJ.

/1 1111 = F~.

(23a)

(23b)

(23c)

(23d)

(23e)

where the explil:it expressions for F, arc given in Appendix B.
It may be noticed that the tangent operator docs not possess the same remarkable

properties as those exhibited by model No. I. In particular. the previous necessary and
sutlicient conditions do not apply. Indeed. the relationship between the damage variable
D~I of model No. I and the damage variable D21 of model No.2 is given by using relations
(20) :
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(24)

On the other hand. the strain energy density takes the form for model No.2:

and can be rewritten in terms of D~ 1 by using relation (24) :

(25)

From an energetic viewpoint. the two models are different as shown in Fig. 9 for a uniaxial
case (all = an = 0). For model No. I. the strain energy density only depends upon D21 •
whereas for model No.2, the strain energy density depends upon Du but also upon k. a
and v12' Therefore the two models arc completely dilferent.

This difference can also be highlighted hy the study of localization and loss of unique
ness. Whereas the loss of uniqueness .lOd the localization C'IO he characterized by very
simple criteria for model No. I. it is no longer the case for model No.2. First. the results
in terms of damage at localization Du (Fig. 10), of strain /:22 (Fig. t I) and of stress a22

(Fig. 12) arc no longer independent of the strain ratio IX. Furthermore, the quantities [)!2.

1:22 and an at localization (Fig. 13) depend upon the Young's moduli ratio k. Instead of
having one localization angle (model No. I). model No.2 leads to two localization angles,
which vary with IX and k (Fig. 14). The same criteria as those used for model No. I do not
apply and no straightforward criterion seems to apply.

Although derived from the same uniaxial analysis. models No. 1 and No.2 lead to
different results when applied under plane stress conditions. Whereas loss of uniqueness
and localization can very simply be described for model No. I, model No.2 docs not admit
such simple descriptions. Moreover. loss of uniqueness and localization do not occur for
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Fig. 9. Normalized strain energy vs normalized stress in the filler direction for model No. I and
model No.2.
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Fig. 12. Stress in the fiber Jirl.'l:tion ,It locali/alioll \'s slr;,in ratio 2 for modd No. I and model

No.2.

the s,lme load level. Nevertheless the two load levels are very close together (as will he
shown in the next section).

These results show th,lt a stmightforward generalization from unidimensional models
to two-dimension'll problems can lead to different types of results. A way to choose the
most realistic one is to perform experiments.
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5. F.E.M. ANALYSIS: SI'INNING DISC

A problem that is given special attention is the case of a circular disc made out of a
fiber composite material. The analysis of this problem is performed not only due to its
signil1cant practical importance in, for example, turbines, but also due to the presence of a
non-homogeneous stress state, a feature that distinguishes this problem from the 2-D study
performed above.

The geometry of the problem is shown in Fig. 15. Here OJ represents the angular
rotation speed, with dimension rad s - '. The outer boundary of the disc, , = a, is assumed
to be free from kinematic constraints and accordingly the loading can be considered here
.tS stress controlled.

In the present setting, the stress state is axisymmetric, at least up to the point where
localization occurs, and hence a cylindrical coordinate system is introduced in Fig. 15. If it
is assumed that the fibers are oriented in the circumferential direction and coordinates x •
•tnd .\'2 in the previous section are replaced with, and qJ respectively, then the constitutive
equations become

(1, = k[ I _ V,2.,,~~ _ D.,,)k) [1:, + v,." ( I - D.. )kl:.. ],

£.,,(I-D.. )
(1.. = 1_,.2 (I-D )k (1:.. +v,..I:,).

'.. '"

(27a)

(27b)
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!'ig. 15. The circular disc.

in olwious nOlations. II should ht: rt:lllt:l1lht:rt:d that no sht:ar strt:ss 11"" is prest:nt dut: to
axisYllllllt:try. Tht: t:xprt:ssion for tht: damage parameter D", is in this prohkm given hy

[
r { 11,. }"'Jf),,>! =: I - t:X[1 -- ,

r", (I - D".I )11",

for modd No. I and by

[
r (I;,.)"JD,.~ = I -t:xp - . '

f", t.",
if I:"". > 0 and I:""" > 0

(2Xa)

(2Xb)

for lllodd No.2. In relations (28), r", is a material constant rt:prt:st:nting tht: volul1lt:
t!l.:pt:IH.lcnet: of tht: problt:m, while all the other parameters art: ddined t:arlier.

To tksaibt: complt:tdy tht: axisymmt:tril: boundary value problem, small strain kin
t:matics and equilibrium t:lJuations also have to be introduced. At this stagt:, it prowd
impossibk to tkrive a dost:d-form solution for the stress statt: and for tht: damagt: variable.
Instead the problt:m was solved using tht: finitt: clement method. Constitutive relations (27)
and (28) wt:re impkmt:ntt:d into a stand~lrd finitt: dement code ABAQUS (1989), and a
solution was sought by discretizing tht: probkm using 2-nodt: axisymmetric shell ekments.
Since tht: lint:ar t<lngent modulus IH also h~ld to bt: implemt:nwd into the finite elemt:nt code,
the load, or angular rot~ltion spt:t:d, relJuired for loss of uniqut:ness and localiz<ltion could
be convenit:ntly t:alculated using ABAQUS through a UMAT routine. The conditions for
these phenomena to occur were previously discussed and will not be dwdt upon further in
this section.

It should be noted that due to the non-explicit expression for the damage parameter
given in (2Xa) an iterative procedure h<ld to bt: outlined to dt:termine the damage state
ch'lracterized by D,. evt:ry time tht: c.l1culated str<lin field did change at a certain Gauss
point. This was done hy using a standard bisection method and should not in <lny way be
a problem regarding tht: accuracy of the solution.

The finite e1emt:nt procedure. as described. was checked by analysing the problem of
a thin walled pressure vessel and a thin rotating ring. Then, the stress state can be derived
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in a closed form through the equilibrium equations and comparisons between the analytical
and the finite element results were possible. Without going into details. excellent agreement
was found between the two solutions. a fact that gives confidence in the numerical procedure
outlined above.

A test of mesh dependence of the numerical results is also performed. The number of
elements proves to have a very weak influence on the solution and satisfactory results for
the stress and state variable can be obtained by modeling the disc with only 20 elements.

Before focusing attention on explicit results. one should first mention that the non
homogeneity of the stress field in this axisymmetric problem did not in any way change
the important features of the mechanical (damage) behavior. All the conclusions drawn in
the 2-D study are essentially confirmed. Therefore, it seems appropriate merely to comment
on some numerical results derived from the finite element computations.

In Fig. 16. the engineering stress is plotted as a function of the strain at the point
within the rotating disc where loss of uniqueness and localization first occur. The material
analysed herein is a ceramic-matrix composite defined in Appendix C. and the geometry of
the disc is chosen with practical applications in mind, namely a = 0.3 m and II = 0.01 m.
For model No. I. localization and loss of uniqueness occur at the same value of wand
where r has the approximate value 0.248 m. Other critical values of important parameters
are

fI(tJ~ = 0.585980 10 III kg m - 's - ~,

D,pl = 0.221199,

(29a)

(29b)

where especially the value of D"o! gives further confidence in the numerical procedure since
the critical value of the dam;age was previously proven [sec relalions (16) ;and (22a) when
JII = 41 to be I-exp (-1/4) = 0.221IlJl)2 ...

The direction of localiz;alion coincides wilh the direction perpendicul;ar to the fiber
direction. as already shown analytically. To lind the ;aclual value of the loc;alizalion direc
lion, the poinl ;al loc;alil.;alion h;as to be delermined wilh high accuracy. ;as mentioned in lhe
2-D sludy.

Reg;arding modd No.2, the earlier finding that loss of uniqueness occurs slightly before
loc;alil.;ation is confirmed by the finite dement comput;ation. Yet, the ;analysis shows lhal
bOlh evenls lake place ;al the s;ame poinl, i.e. for the same v;alue of the radius (r = 0.263
m). Crilic;al values as regards loss of uniqueness arc

300 -r-----.---,.--.------.---,

200+---t---t----:J!F---t---j

0'11 (MPa)

100+----1htV---+---+--+----;

0.050.00 0.10 0.15

Eq> (%)

Fig. 16. Engineering stress (T., as a function of strain Cop at the point on the circular disc where loss
of unilJueness and localization occur. £, = 20 GPa, £op = 140 GPa, v,.. = 0.02143, G,op = 13.0 GPa.
m =4. (T~ = 1453 MPa. r~ =0.002 m.1l = 0.3 m. 11 = 0.01 m. (-) damage model No. I (r = 0.24H
mJ, (- -I damage model No.2 (r = 0.2631, (·1 point on the stress-strain curve indicating that loss

of unilJucness and localization occurred.
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pw:' =0.5971201O 'O kgm- J s-:',

Dog:. = 0.217816,

(30a)

(30b)

and for localization

pw:' = 0.59712:!lO'Okgm-Js-:',

D",:. = 0.217822.

(30c)

(30d)

For this model, the direction of localization formed an approximate angle ± 14' with the
r-axis, which implies that the axisymmetric analysis is no longer valid after localization.

In Fig. 17, the stress field is plotted as a function of the radial coordinate r at pw:' = 0.55
10' 0 kg m - J S -:.. that is just before localization. A comparison is made with an elastic
solution where the effect of damage is ignored. As might be expected, the introduction of
damage reduces the maximum stress acting within the disc.

Though no methodical attempt was made to analyse the stability behavior of the disc,
some calculations were performed with model No. I, under axisymmetric conditions, in the
"post localization" region. In this case, the material behavior is assumed still to be described
by constitutive equations (27) and (28). This computation constitutes the so-called homo
geneous response of the structure since no new constitutive law is introduced in the local
ization band. It can be noticed that no fiber pull-out effects are considered after localization.
The tlnite element results can therefore be described as a lower bound to the real solution.
The calculations show that the additional load. represented by Jlw:, required for instability
proves to be only a few percent of the localization load. This tlnding is significant from a
practical point of view since the load required for loss of uniqueness and localization is very
close to load levels reached during service in turbines for example. It may be remembered,
as mentioned earlier, that a phenomenon such as fiber pull-out may significantly increase
the load-carrying capacity of a structure, as shown by Hayhurst et al. (1988).

6. CONCLUSIONS

Using a one-dimensional study of fiber breaking modeled by a single damage variable.
two models arc derived. Both of them arc then generalized to a 2-D plane stress analysis. and
difTer from an energetic point of view. Whereas model No. I constitutes a straightforward

0.30.20.1

......
.~

/II····
/.

)i

/
:/o

0.0

50

100

250

(1<p(MPa)

150

200

rem)
Fig. 17. Engineering stress <T~ as a function of the radial coordinate r. E, = 20 GPa. E~ = 140 GPa.
V,~ = 0.021·0. G,~ = 13.0 GPa. ", = 4. <T~ = 1453 MPa. r~ = 0.002 m. a = 0.3 m. ,,= 0.01 m.
I'w: = 0.55 10'0 kg m -, s-:. (-) damage model No. I. (- --) damage model No.2. (_. _._)

linear elastic model when D.• = O.
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generalization of the elementary study. model No.2 exhibits different features. Indeed. loss
of uniqueness and localization can be described by some very simple criteria referring to
Continuum Damage Mechanics for model No. I. Conversely. these simple criteria do not
apply for model No.2. This study shows. if necessary. that an identification that seems to
be equivalent in an unidimensional analysis can differ significantly in a two-dimensional
study. An experimental analysis may decide which model is closer to reality. especially the
prediction of the direction of localization.

The conclusions drawn from the 2-D study are essentially confirmed by the finite
element analysis of a spinning disc. This result is in itself interesting since it shows that
the important features regarding loss of uniqueness and localization in fiber reinforced
composites are independent of whether or not a homogeneous shear free stress field is
present.

The finite element results also show that loss of uniqueness and localization occur very
close to load levels used in service; a finding that underlines the importance of giving due
consideration to such failure modes. also at the manufacturing stage.

"'ekll,,"1('(!t/l"lIIelll.,-The :lUthl'rs gratefully a.knowledge the financial support of the U.S. Air Force through
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APPENDIX A

[X]=X"-X".

[u) = O.

[a"n,) = O.

Maxwell's compatibility equation [t,,] = ~ [g,n, + n,g,].

0= [a"n,J = [u"Jn, = [1HJ""t,,]n,.

If we assume there is a discontinuity across the surface characterized by n. then IHJ + = IHJ"

[J-<]""t,,]n, = 1HJ",,[t,,]n, = 1HJ""n(g.n, +n,g.)Jn, = O.

Since we assume that H has the minor symmetries IHJ"" = IHJ"" = 1HJ,,1k'

[n, iHl""n ,]g. = O.

This equality has to be satisfied for g different from zero. This imposes that for the matrilt n' H . n to be singular

I. Det(n·1HJ 'n) = 0·1

APPENDIX B

E.
k ='

H,'

F,
E:

k(1 - vi ,(1-:': f),')k)'

f _ H,v,,(v"':I1+'::')
, - (l-v;,(I-D,)k"

. H,v,,(I-D,)
1-, "' ,- .-- ".

l-vi:(I-f),)k

F _ 1:",(1-/):) .

• - l-v;,(I-D,lk'

APPENDIX C

Material parameters for the ceramic-matrix tiber compositc analysed in thc finitc c1emcnt calculations are:

H, = 20 GPa.

H, = 140 GPa.

C" = 13 GPa.

I'" = 0.0214.

fit = 4.

fT," = 1453 GPa.

'II = 0.002 m.


